lunes, 13 de septiembre de 2010

Probabilidad en la Industria!!

Como ya sabemos, la probabilidad se encarga de estudiar y construir métodos para medir y analizar los fenómenos aleatorios, en los cuales los resultados es producto del azar. Por ejemplo, la lotería se basa en puro azar, tratando de que una persona pueda atinarle a una cierta cantidad de números a salir en el sorteo a cambio de ganar una generosa cantidad de dinero. Cada que se saca un producto nunca se sabe con exactitud que tanto le va a gustar al publico en general, una persona puede preferir tenis antes que un reloj, otra puede optar por comprar cerveza antes que un yogurt. De igual manera no todo se hace al azar, antes se hacen estudios y se recaban datos de lo que el cliente necesita o busca, una vez terminado el producto, ya todo depende del cliente y de la probabilidad, esto es, ¿que tanta probabilidad hay de que le satisfaga el producto al cliente?, o ¿que tanta probabilidad hay de que sea bien aceptado el producto en la sociedad?.

jueves, 2 de septiembre de 2010

Demostracion del factorial cero... 0! = 1

Todo en las matematicas tiene un porque...
El factorial cero no es la excepcion.

Tomemos como ejemplo el factorial cinco:

5! = 5 * 4 * 3 * 2 * 1 = 120

Si lo simplificamos:

5! = 5 * 4! = 120

Hasta ahora vamos bien no??
Este y cualquier otro ejemplo equivaldría a...

n! = n * (n - 1)!

Y si pasamos la n que esta multiplicando del lado derecho al lado izquierdo obtenemos...

n! / n = (n - 1)!

Imaginemos que n vale 1 y sustituimos...

1! / 1 = (1 - 1)!

Lo cual equivale a...

1 = 0!

Woooow!!
El resultado: Factorial de cero igual a uno!!!!

Muy facil no??